

Ancres draguées et ancres plaques Daniel Orejuela (Subsea 7)

ANCRAGES DES ÉOLIENNES FLOTTANTES 14 Mars 2024

Topics:

- **Type of Anchors General description**
- Plate Anchors Drag Embedded anchors
- Penetration predictions Drag Embedded anchors
- Anchor line equations
- Drag Embedded Anchors kinematic
- Drag Embedded Anchors in sand and high strength Clays
- Characteristic resistance of Fluke anchors
- Post Installation effects
- Installation tension and proof tests

Tower Floating substructure Mooring lines Foundations

JOURNÉE SCIENTIFIQUE ET TECHNIQUE 14 mars 2024

Type of anchors

Anchor Piles :

Driven/vibro Piles

Drilled and Grouted Piles

Dynamically installed piles (Torpedos)

JOURNÉE SCIENTIFIQUE ET TECHNIQUE 14 mars 2024

JOURNÉE SCIENTIFIQUE ET TECHNIQUE 14 MARS 2024

Type of anchors

Plate Anchors:

Push-in Plate Anchors

Suction Embedded Plate Anchor (SEPLA)

Dynamically Embedded Plate Anchor (DEPLA)

DEPLA

Drag – Embedment Anchors (DEA)

Fluke Anchors

- HHP anchors
- 3x4 to 6x9m 5t to 50t (i.e. ballasted)
- Limited uplift resistance
- Vertical Loaded Anchors (VLA)
- Tension on the line is redirected to be perpendicular to the plate
- Shear Pin
- Require deep burial
- 5 to 30m² fluke area

Drag Embedment Anchor – trajectory predictions & UHC

- The penetration and self-burial of a fluke anchor into the seabed is a complex soil structure interaction mechanism
- The initial angle during anchor setting is a governing parameter
- **Trajectory & UHC prediction methods:**
 - Empirical (Based on manufacturer charts)
 - Analytical approaches (i.e. limit equilibrium and Plasticity)
- Predictions are particular challenging in layered soils
- Chain forerunner / soil interaction influences the anchor trajectory

Drag anchor trajectory in Clay⁽¹⁾

⁽¹⁾ Upper Bound Analysis for Drag Anchors in soft clay – Kim et al. (2005)

Drag Embedment Anchor – Penetration/trajectory predictions

Effect of the initial angle into the anchor trajectory

Mud = 50° Sand =

• Optimal initial fluke angle for setting stage

Co Co Co

Effect from initial fluke angle in clay

Drag Embedment Anchor – Penetration/trajectory predictions

Empirical predictions

- Based on anchor manufacturer charts
- Recommendations from codes
 - ISO, API, (Based on NEL)
- Charts are provided for generic soil conditions and not site specific

NEL: (Naval Civil Engineering Laboratory)

Anchor type	Normalized fluke tip penetration (Fluke lengths)		
	Sands/stiff clays	Mud (e.g. soft silts and clays)	
Stockless	1	3 ^a	
Moorfast Offdrill II	1	4	
Boss Danforth Flipper deita GS (Type 2) LWT Stato Steyfix	1	4 ½	
Sevpris MK III Bruce FFTS MK III Bruce TS Hook Stevmud	1	5	

BS-EN-ISO 19901 -7 :Station keeping systems for floating offshore structures and mobile offshore units – Estimated Maximum fluke tip penetration

Example of Vryhof chart for drag/embedmet predictions

Drag Embedment Anchor – UHC empirical predictions

Empirical predictions

- Based on anchor manufacturer charts
- Recommendations from codes
 - ISO, API, (Based on NEL)
- Charts are provided for generic soil conditions and not site specific
- General practice is to consider :
 - A penetration not exceeding 60% of the maximum penetration; or
 - A resistance not exceeding 60% of the ultimate resistance.

NEL: (Naval Civil Engineering Laboratory) UHC : Ultimate Holding Capacity

Design chart Stevmanta VLA – (vryhof)

Design chart Stevpris MK5 – (vryhof)

Drag Embedment Anchor – Penetration/trajectory predictions in CLAY

- Analytical approaches
- Based on Limit Equilibrium:
 - Neubecker and Randpolph*
 - DNV (DIGIN software): (DNV-RP-E301)
- Based on Plasticity limit models
 - O'Neil et al.
 - Aubeny and Chi*
- Anchor line equations
 - Integration of DEA trajectory & Anchor line equation

* General principles for drag anchors in Clay provided in "Recommendations for planning and designing anchor foundations of floating wind turbines Appendix D" CFMS (2024)

Equilibrium of forces model - Neubecker & Randolph

Analytical method - simplified model for drag anchor equilibrium – Aubeny et al

AHV

Anchor line equations - Clay

Anchor line equations – Non-Cohesive soils

Mortensen (2015)

 $F=N\cdot\alpha_{sand} \qquad N=d\cdot L\cdot A_{sand}\cdot (0.5\gamma'\cdot dA_{sand} + N_{a}\gamma'\cdot z)$ (Bearing capacity strip foundation)

Line	A_{sand}	$lpha_{sand}$
Wire	1.0	tan ơ'
Chain	b/d (~3.4)	0.5

Inverse catenary shape: Numerical iteration – Boundary conditions (known T at Dipdown, shackle z (m))

Neubecker & Randolph (1995) :

- Exponential relationship to derive the reverse catenary

z*=e^{-X*θa}

- Good approximation for soils with proportional bearing resistance to depth

DEA kinematic and anchor line equation in clay

Aubeny and Chi (2010)

Kinematic of the anchor:

m,n,p,q = interaction coefficients considered as m = 1.56, n = 4.19, p = 1.5 and q = 4.43 (Murff et al. 2005)

Ratio Normal /tangential translation

$$R_{nt} = \frac{v_n}{v_t} = \frac{\left(\frac{N_{tmax}}{N_{nmax}}\right)\left(\frac{pq}{n}\right)\left(\frac{|N_n|}{N_{nmax}}\right)^{q-1}}{\left[\left(\frac{|N_m|}{N_{mmax}}\right)^m + \left(\frac{|N_t|}{N_{tmax}}\right)^n\right]^{\frac{1}{p}-1}\left(\frac{|N_t|}{N_{tmax}}\right)^{n-1}}$$

Anchor line equation (Neubecker & Randolph)

$$T_a \left(\theta_a^2 - \theta_0^2 \right) = 2z E_n N_c b \left(s_{u0} + k \frac{z}{2} \right)$$

Equilibrium tension at anchor shackle (0° rotation)

$$T_a = N_{e0} s_u A_f$$

Key equation anchor rotation/ padeye angle line

$$\frac{d\theta_a}{dz} = \frac{1}{\theta_a} \left(\frac{E_{nN_cb}}{N_{e0}A_f} - \frac{k\theta_a^2}{2s_{ua}} \right)$$

Anchor displacement

 $\Delta z = \Delta t \sin \theta_f - \Delta t R_{nt} \cos \theta_f$

 $\Delta x = \Delta t \cos \theta_f - \Delta t R_{nt} \sin \theta_f$

DEA kinematic and holding capacity - Clay

Aubeny and Chi (2010)

- Full drag distance & penetration prediction
- Ultimate anchor holding capacity at 0° fluke rotation
- Prediction for additional drag distance at operation
- Relatively complex
- Homogenous soft Clay Su=S_{u0}+K·z
- N_{e0} bearing factor requires site corelation & depends on multiple variables:
 - Shank thickness, Fluke thickness, fluke shank angle

Example using Su=2+1.5z, N_{e0} =5.8, Fluke area 6m², Initial angle θ_{f} =45°, line diameter=0.076m

DEA in Sand and High strength Clay – General recommendations

Sand

- Analytical predictions similar to clay provided in (*Neubecker and Randolph (1996), Miedema et al (2001) and Liu et al (2010)*)
- Shallow penetration expected, fluke ballast is in some cases required
- In very dense sand, penetration = 1 x fluke length and loose sand 2 x fluke length
- General recommendation is at least one fluke penetration to dump scouring effects
- Drag distances are short : ~8 x Fluke length
 - High strength clays
- Poorly documented
- Adopt a lower fluke shank angle than the one recommended for soft clays
 - Layered soils
- Sand/Hard clay transitions or soft Clay / Hard clay transitions (slippage risk)

Predicted fluke tip penetration versus fluke penetration angle for BRUCE FFTS Mk4 – OTC 20085

Characteristic resistance of Fluke anchors

The characteristic resistance of DEA at the dip down point is defined as :

 $R_{c} = R_{i,c} + \Delta R_{post} + \Delta R_{fric}$

 $R_{i,c}$: Characteristic installation resistance at dip down point

 ΔR_{post} : Post installation effects (cyclic effects, set-up, additional drag)

 $\Delta R_{\rm fric}$: Frictional resistance chain/seabed along L_s (if no uplift)

- The characteristic installation resistance is equal to the installation tension (T_i) since measurable and maintained during a sufficient time lapse
- The characteristic resistance with post installation ΔR_{post} effects are :
 - With additional drag

$$R_{c} = R_{i,c} + \Delta R_{drag} + \Delta R_{cyc} + (\Delta R_{fric})$$

$$\Delta R_{post}$$

With no additional drag

$$R_{c} = R_{i,c} + \Delta R_{setup} + \Delta R_{cyc} + (\Delta R_{fric})$$

Post Installation effects

Additional drag

- Allows for lower T_i
- Anchor allowed to penetrate/drag for a design event
- Additional drag mobilizes further resistance (however set-up effects are lost)
- Depending on the project constrains and consequences (soil type & ground uncertainties, mooring configuration, floating wind turbine tolerances)

Cyclic loading effect

- Variation in resistance : combination of rate of loading effects (+) and cyclic degradation effects (-)
- For one way loading the above cumulated effect is (+)
- Special care in highly compressible soils or highly sensitive to cyclic degradation (i.e *carbonate soils*) whose effect can be (-) (*Neubecker et al (2005)*)

Set-up effects (in clay)

- In the direction of the fluke
- Partial remolding (uneven disturbance) : Disturbance Ratio DR=0.5
- Set-up factor U_{setup} f(S_t , DR, t_{setup}, geometry, depth, orientation)

Cyclic loading factor U_{cy} (for N_{eqy} =10)

Cyclic loading factor U_{cy} for typical N_{eqv} =10 (Andersen 2004)

$$R_{cy} = R_{i,c} \cdot U_{setup} \cdot U_{cy} = R_{i,c} + \Delta R_{setup} + \Delta R_{cyc}$$

Installation tension and proof tests

Minimum Installation tension T_i

 $T_{i,min} = T_i + \gamma_R \cdot \Delta R_{f,i}$

 μ = coefficient of seabed friction W_1 ' = submerged weight per unit length of anchor line γ_R = resistance factor

Dis

$$\Delta \mathbf{R}_{\mathrm{f},\mathrm{i}} = \boldsymbol{\mu} \cdot \mathbf{W}_{\mathrm{l}} \cdot \mathbf{L}_{\mathrm{s},\mathrm{i}}$$

- Minimum tension required at installation to reach the design capacity
- should be applied and maintained for a designated holding period. ٠
- The holding period, influenced by soil type, should not be shorter ٠ than 15 minutes
- holding period, any relaxation (i.e. additional drag) should be ٠ compensated, and the tension maintained as constant as possible.

