Recommandations pour les reconnaissances géotechniques

Thierry Denois (EDF-re)

ANCRAGES DES ÉOLIENNES FLOTTANTES
14 MARS 2024

Soil investigations for floating offshore windfarm

Agenda :

Specific purpose of Soil Investigation for FOWInvestigation tools and methodsFrom geological to ground modelInvestigation planningInvestigation content\square Challenges of FOW investigations

Thierry Denois (EDF-RE) : thierry.denois@edf-re.com

Specific purpose of SI for FOW

Ultimate capacity

Sediment mobility

Permanent displacements

Cyclic degradation
Overall slope stability

Scour potential
Need of sea floor
Cyclic displacements
preparation
Liquefaction analysis
Overall site conditions

Anchor

Journée Scientifique et Technique
14 MARS 2024

ISSUE	PARAMETERS
Ultimate strength	Monotonic shear strength under various stress paths (strength anisotropy) Cyclic shear strength under various combinations of average stress and cyclic amplitude for triaxial or simple shear stress paths Sand: Peak effective angle of friction (ϕ^{\prime}), critical angle or phase transition angle, constant volume friction angle ($\phi^{\prime}{ }_{c v}$)
Permanent displacements	Compressibility Permeability Permanent strains and pore pressures generated under various combinations of average stress and cyclic amplitude for triaxial stress paths or simple shear Compressibility after cycles
Cyclic displacements	Cyclic shear strain versus cyclic shear stress for triaxial or simple shear stress paths Initial cyclic shear modulus
Foundation stiffness	Cyclic shear strain versus cyclic shear stress for triaxial or simple shear stress paths Shear modulus at very small distortion (G_{\circ} or $\mathrm{G}_{\max }$) and evolution with distortion level Damping
Soil reactions	Monotonic and cyclic shear strength Compressibility under virgin loading and reloading Permanent and cyclic strains and permanent pore pressures under various combinations of average stress and cyclic amplitude for triaxial or simple shear stress paths Sea floor topography and morphology, presence of anomalies on the sea floor
Skirt penetration	Undrained shear strength Remoulded shear strength (or sensitivity) Drained angle of friction (ϕ^{\prime}) - Sand Residual sand-steel or sand-concrete interface angle (δ_{r}) Cone resistance (q_{c}) Sea floor topography and morphology, presence of anomalies on the sea floor Presence of blocks in the soil

Table 5.2: Additional parameters that might be required for specific issues

ISSUE	PARAMETERS
Pile installation	Shear strength Young's modulus (E_{50}) or shear modulus (G_{50}), or strain at 50% of ultimate strength $\left(\varepsilon_{50}\right)$ - Clays Cone resistance (q_{c}) Unconfined compressive strength (UCS $=\sigma_{c}$) - Rocks Abrasiveness Clay sensitivity Pile wall rugosity (d)
Liquefaction potential	CPTU data (q_{c} or $\mathrm{q}_{\mathrm{t}}, \mathrm{R}_{\mathrm{f},} \mathrm{B}_{\mathrm{q}}$) Grain size and fines content Atterberg limits (w_{L} and w_{P}) and water content Shear waves velocity $\left(\mathrm{V}_{\mathrm{s}}\right)$
Scouring and erosion	Grain size for sands Permeability Shear strength for clays
Cable burial	Cone resistance (q_{c}) - Sands and clays Density Grain size and permeability - Sands Rock abrasiveness Thermal conductivity Electrical resistivity Velocity of compression $\left(\mathrm{V}_{\mathrm{p}}\right)$ and shear $\left(\mathrm{V}_{\mathrm{s}}\right)$ waves

Investigation tools and methods

Geophysical

Geotechnical

From geological to ground model

Initial geological model

Seismo-stratigraphic model

Site geological model

Geotechnical model

From DTS: general stratigraphy and lithology of the main geological formations; tectonic elements; main geological hazards and constraints

From preliminary Gphy : bathymetry digital ground model, stratigraphic model based on seismic with hypothesis on Vp.
=> definition of area of similar nature guidance for BH location
=> seismic feature DTS

Integrate result of preliminary geotech : improved velocity model; lithological characterization of layers; draft of soil province ; assign prelim geotech parameters

Define geotechnical units (gather layers of similar geotech parameters, distinguish internal variations inside seismic unit as weathering), define geotechnical design profiles, including OCR, Ko, Gmax ...)

$\gamma_{\text {d }}$
$\gamma_{s a t}$
k
v
$\left[\mathrm{kN} / \mathrm{m}^{3}\right] \quad 13$
$\left[\mathrm{kN} / \mathrm{m}^{3}\right] \quad 18$
[$\mathrm{m} / \mathrm{sec}$]
[-]
[kPa]
[${ }^{\circ}$]

Investigation planning

Investigation content

TARGET PENETRATION

1st Gphy

1st Geotech

> MBES, SSS (50 to 100% overlap) Single or mulittrace seismic (boomer sparker, typically 250 m interline
> Sub-bottom profiles

Seabed CPT, vibrocore BH with in-witu testing : typically on 20 to 30% WTG, at least one BH by geological province, 30 to 50 m depth depending soil/anchor type

$2^{\text {nd }}$ Gphy

Grid refinement

$2^{\text {nd }}$
Geotech

> MBES, SSS (100% overlap)
> Single or mulittrace seismic (boomer sparker, $30-50 \mathrm{~min}$
> Sub-bottom profiles, Pinger or chrip Option for seismic réfraction

DRAG ANCHOR:
 1 CPT per anchor location, if
 heterogeneity: 1 CPT on penetration path 1 sampling per anchor cluster

```
ANCHOR PILE :
```

1 CPT per pile

1 CPT+1 BH per anchor cluster Or 1BH with alternate sampling/CPT

SUCTION PILE :
 1 CPT per pile

1 Tbar + 1 VST (vane shear test) +1 BH
(sampling) per anchor group

GRAVITY PILE

1 CPT per location 1 BH with sampling per group

Typically 50 m for seismic,

Design penetration + max (20\% ; 0,5 width)

Design penetration +2 pile diameter

Design penetration
+0,5 caisson diameter

1,5 anchor diamter and > 2 m below skirt

Challenges of FOWF investigation

High water depth :

* Above \#200m: spacing between MBES/SSS lines shall be reduced with waterdepht (increase survey lenght)
* Below \#200m: MBES/SSS resolution can become too low for feature detection. Would need deep fish or AUV.
* Often more geohazard on continental slope (slope instability, prograding canyon...)
* Conventionnel drilling becomes even more expensive with water depth (time for drillstring setting and tool handling). Only few seabed drilling unit can reach $30-50 \mathrm{~m}$ in soil and are heavy/complex to deploy.

Mulitple anchor layout variants : late project knowledge of anchor locationsRisky development : temptation to limit preliminary geotech to vibrocore/piston core : limited penetration (\#10m).
Often normally consolidated and sensitive soil, more difficult to sample and test without disturbance
Effect of thin soil layer on buried chain geometry / resistance : what parameter to consider ?
[geotechnical design] Multidirectional loading still not fully addressed in design method

No specifically adressed in current recommendations ... still room for improvement

