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A method for describing the stress and strain dependency of stiffness in sand 
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ABSTRACT:High resolution pressuremeters are used routinely to provide stiffness parameters from unload/reload cycles. This 
technique is largely unaffected by disturbance and so can be used with all insertion modes. It is straightforward to describe the strain 
dependency of stiffness in clays in the range 10-4 to 10-2 using a power law to fit the trend of reloading data (Bolton & Whittle, 1999). 
Pressuremeter tests in clay tend to be undrained and  following failure the mean effective stress throughout  the loading is constant. 
Hence all cycles plot the same trend, a rare example of repeatability in a destructive test.  

Pressuremeter tests in sand are drained events. Consequently the mean effective stress changes throughout the loading, so in 
addition to strain dependency there is stress dependency. The method outlined in this paper results in a single expression that 
describes the strain and stress development of stiffness. This is done by combining a power law approach with a widely used stress 
level adjustment (Janbu, 1963). The only requirement from the test is that there should be at least three unload/reload cycles.  
 
RÉSUMÉ : les pressiomètres à haute résolution sont couramment utilisés pour relever les paramètres de rigidité sur les cycles de 
déchargement/rechargement. Cette technique n'est, pour l'essentiel, pas affectée par les perturbations et peut donc être utilisée avec 
tous les modes d'insertion. Les effets des déformations sur la rigidité des argiles dans la gamme 10-4-10-2 se décrivent de façon simple, 
en utilisant une loi de puissance pour lisser la tendance des données de rechargement (Bolton & Whittle, 1999). Les essais 
pressiométriques réalisés dans l'argile sont généralement non drainés et, en cas de défaillance, la contrainte effective moyenne est 
constante sur l'ensemble de la charge. Cela explique pourquoi tous les cycles tracent la même tendance, exemple rare de répétitivité 
pour des essais destructifs.  

Les essais pressiométriques effectués dans le sable sont des événements drainés. Cela induit des variations de la contrainte 
effective moyenne sur l'ensemble de la charge : il y a donc, en plus de la dépendance aux déformations, une dépendance aux tensions. 
La méthode proposée dans cet article permet d'obtenir une expression unique pour décrire les effets des déformations et des tensions 
sur la rigidité. Cela passe par la combinaison entre une approche fondée sur la loi des puissances et une pratique, largement utilisée, 
d'ajustement du niveau de contrainte (Janbu, 1963). La seule exigence du test est la nécessité de disposer d'au moins trois cycles de 
déchargement/rechargement. 
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1 INTRODUCTION 

Pressuremeter tests incorporating small cycles of unloading and 
reloading are able to provide consistent and repeatable data for soil 
stiffness. The technique was suggested as a procedure for 
determining shear modulus in the early 1980's (Hughes, 1982).  

The overwhelming advantage of the procedure over other ways of 
deriving stiffness parameters from a cavity expansion test is the 
relative immunity from insertion effects. The only requirement for 
the procedure is that a well-developed plastic condition exists  
before a cycle is taken. Any pressuremeter able to load the material 
to a greater stress than it has previously suffered has the potential 

 to deliver highly repeatable data for stiffness. There is no intrinsic 
advantage in using self-boring over more invasive techniques such 
as pre-boring or pushing.  

Reloading cycles are characterised by a small change in 
displacement for a comparatively large stress alteration, so the 
technique demands good resolution of displacement and a low 
level of uncertainty in the measurement. Uncertainty can result 
from mechanical imperfections in the displacement system 

(friction), the finite stiffness of the pressuremeter (compliance) 
and the perverse nature of the ground itself. A cycle involves 
two changes of loading direction and most materials will not 
tolerate this without some level of creep.  Figure 1 shows a 

 
 
Figure 1 An undrained test with 3 unload/reload cycles 
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Figure 2 The strain range of pressuremeter stiffness 
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typical test in clay incorporating three cycles, including one on 
the final unloading.  

The unload/reload cycles (or 'loops') do not follow a 
linear path but appear hysteretic. This hysteresis is not a defect 
but a characteristic of the non-linear nature of the underlying 
stress:strain properties of the material under load. If the 
resolution of the system is sufficiently high then the path 
followed during an unload/reload event can be used to resolve 
the strain dependency of stiffness over a shear strain variation of 
10-4 to 10-2. The lower end of this scale is not quite small enough 
to capture the maximum stiffness of the material but the range is 
sufficient to describe the greater part of the degradation curve 
(fig 2).  

There are a number of methods for using unload/reload 
data to obtain the degradation trend (Muir Wood 1990, Jardine, 
1991) but a method widely used for undrained tests is that 
outlined by Bolton & Whittle, 1999. This assumes that the 
stress:strain degradation follows a simple power law, showing 
that secant shear modulus Gs is given by  
 Gs = αγ(β-1) (1) 

where α and β are the constant and exponent of the 
power law trend of shear stress against shear 
strain.  
γ is any shear strain in the range  10-4 to 10-2 

 

Pressuremeters do not measure shear stress and shear strain 
directly. To determine non-linear stiffness parameters, devices 
must be able to resolve displacements of a micron or less. These 
will be probes that have local instrumentation and give readings 
of the pressure and displacement of the cavity wall, in effect 

radial stress σr and circumferential strain εc. The method for 

obtaining α and β from σr and εc co-ordinates is briefly described 
in section 2. A similar exponential trend is evident when 
unload/reload cycles are conducted in drained material but the 

calculations for shear stress and shear strain are less familiar and 
are more complex (section 3). 

Although the power law approach can be considered as 
merely curve fitting, there are reasons for thinking that the 
splitting and crushing of particles at the micro-mechanical scale 
with the consequent redistribution of stress must result in an 
exponential trend as soil is loaded past its linear elastic range 
(Bolton 1999).  The exponent β seems to have a physical 
meaning, related to average particle size at the micro-mechanical 
scale. A typical clay will have a β in the range 0.5 to 0.6, a dense 
sand in the range 0.8 to 0.9.  A β of 1, meaning linear elasticity, 
then emerges as a characteristic of an intact material (rock). 

The current stiffness at any point in a pressuremeter 
loading is also stress dependent. Undrained events have the 
convenient feature that the mean effective stress is constant 
following failure, so that to a first approximation all cycles give 
similar data (fig 3). In the case of drained events the mean 
effective stress changes throughout the loading and there is a 
corresponding alteration in stiffness (fig 4). Bellotti et al (1989) 
give a procedure that allows pressuremeter determined modulus 
to be normalised to a common stress level such as the effective 
insitu lateral stress, σ´ho . This paper uses much of the argument 
but offers a different solution that allows stress and strain 
dependency to be defined with one expression. It starts by 
reviewing a method already used for tests in clay, and then 
adapting it for tests in sand. 

2 Undrained analysis 
For each cycle, co-ordinates of radial pressure and displacement 
are plotted on axes of radial stress σr and  circumferential strain 
εc (fig 5). Each half of the unload/reload cycle is a product of the 
same stress:strain properties so it is only necessary to plot data 
following the loop turnabout point. These are least affected by 
mechanical imperfections and material creep. An origin is 
identified at the turnaround point; all subsequent data are plotted 
from this origin  and the power law trend is obtained by 
regression analysis. As the example shows, the correlation 
coefficient is remarkably good. 

The constant and exponent define a power law in radial 
stress/circumferential strain space. Because the test is undrained 
and there are no volumetric strains to consider, the equivalent 
power law terms in radial stress and shear strain space is just a 
translation of the abscissa and so can be calculated by dividing 
the constant term ηc by 2β to give ηs. This relationship holds for 
shear strains below the yield strain. Palmer 1972 is an exact 
solution that defines the current shear stress τ in terms of the 
current gradient of a pressuremeter curve: 
 

γ
γτ

d
dp=   (2) 

 
  
Figure 3 The repeatability of undrained secant stiffness data 
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Figure 4  The variation of secant stiffness with stress level 
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Figure 5  Plotting reload data 
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where p is radial stress at the cavity wall 
γ is shear strain 

 

Strictly, this is a small strain version of the solution but for the 
strain range being considered this is not significant. The 
procedure is as follows: 
From the power law obtained from fig 5: 

 p = ηcεc
β (3) 

Modify the coefficient to obtain the equivalent expression in 
terms of shear strain:  
 p = (ηcεc

β)/2β = ηsγβ   (4) 
Substitute for p in (2) with the power law result to solve the 
partial differential equation and divide by shear strain to give 
secant shear modulus : 
 

 

(5) 

 
 
 
where βηs = α, the shear stress coefficient 

(6) 

 
(6) is identical to (1). The typical result shown in fig.3 shows 
smooth lines defined by the power law and points obtained by 
applying the Palmer result (2) directly to the measured data.  

3 Drained analysis – strain dependency 
Initially, drained unload/reload data are treated in a similar way 
to undrained data. For each cycle a plot of radial stress against 
circumferential strain is produced and fitted with a power law, 
the one change being that the ordinate is now effective radial 
stress. The result is a power curve relating stress to strain at the 
cavity wall in the following form: 

 p´= ηcεc
β (7) 

(7) may be used to solve the numerical solution for a drained 
cavity expansion of a purely frictional material  due to 
Manassero (1989). Some additional information about the 
material is required, specifically the water table (to allow total 
stress to be converted to effective stress) and an estimate of the 
internal angle of friction when the material is deforming at 
constant volume. The Manassero solution uses Rowe’s stress 
dilatancy theory and relates the unknown current radial strain εr 
to the known current gradient of a loading curve in radial 
stress/circumferential strain space via the stress ratio Ka : 
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and ɸcv is the internal angle of friction when 
thematerial is deforming at constant volume. 

(8) 

 
 Knowing the co-ordinates of two adjacent positions on the 
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(9) 

 

Because the reloading data are referred to a new origin at 
the loop turn-around co-ordinate, the radial strain starts from 
zero. The first interval can be calculated and the sequence of 
dependent calculations started. Given radial strain, the unknown 
circumferential stress is straightforward to derive. 

Manassero acknowledges that measured data are likely 
to be too noisy to be used directly and suggests curve fitting the 
cavity expansion prior to implementing the solution. The 
approach here is in effect to curve fit the elastic parts of the 
loading (the unload/reload cycles). A smooth set of radial stress 
and circumferential strain co-ordinates are produced and used 
with (9) to derive an equivalent set of radial strains. It is then 
straightforward to obtain the trend of shear strain and shear 
stress, another power law. This gives α and a modified β. A 

typical test in dense sand is shown in fig.6 and the resulting 
stiffness:strain curves are shown in fig.4. In general β values 
from the shear stress/shear strain data are very slightly greater 
(tending more towards 1, the linear elastic value) than those 
obtained from the initial power law, suggesting small volumetric 
strains are being generated during the unload/reload events. 

4 Drained analysis – stress dependency 
Bellotti et al (1989) give a procedure for converting modulus at 
intermediate stress levels to a reference level, the insitu effective 
stress σ´ho. It is based on the relationship proposed by Janbu 
1963: 

 n

av

ho
measref GG 


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=

σ
σ '

 
(10) 

The exponent n is assumed to be constant for a particular 
material. The plane strain mean effective stress is defined as 
 σav =½(σr´+ σc´). Throughout an elastic unload/reload event the 
mean effective stress remains constant as changes in radial stress 
are matched by equivalent changes in the circumferential stress 
Assuming that plasticity has been initiated, then  σr´ at the cavity 
wall is p´ and is measured, and σc´ is related via σc´= σr´(1+1/N) 
where N is the principal stress ratio [1+sin Ф]/[1-sin Ф]. Ф is the 
peak angle of internal friction. It follows that at the 
commencement of an unload/reload cycle: 
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(11) 

Bellotti et al use a more complex calculation to derive 
σav that reflects an average of all values from the cavity wall to 
the elastic boundary but the stress level at the borehole wall is 
the dominant factor.  In principle the exponent n can be obtained 
by plotting mean effective stress against the measured modulus. 
However the exponent is not just a stress related variable, it also 

( ) ββ γβηγβηγτ ss == −1

ss G== −1βγβη
γ
τ

 
Figure 6  A test in dense sand with 5 cycles 
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varies with strain so for a good correlation the measured 
modulus data would have to use the same strain amplitude. 

Table 1 extracts data from the test shown in fig.6. The 
values of α and β are those shown in fig 4 and the mean 
effective stress has been calculated from (11). It happens that for 
this test the ambient pore water pressure was zero so total and 
effective radial stress are the same:  

Table 1 Unload/reload data from 5 cycles in dense sand 

Cycle Constant 
α 

Exponent 
β 

p´ σav 

 (MPa)  (kPa) (MPa) 
1 57.834 0.866 1075 0.649 
2 71.449 0.864 2102 1.269 
3 78.323 0.860 3216 1.942 
4 73.736 0.837 4077 2.462 
5 78.694 0.831 5050 3.049 
Ambient pore water pressure is zero and the internal 
angle of friction is 41° 
 

Figures 7 and 8 show how the limitations of (10) can be 
overcome and the strain dependency of the stress level 
relationship extracted. The α and β values in Table 1 are used to 
give estimates of secant shear modulus over a sensible strain 

range. Figure 7 is the result, where each cycle is controlled by a 
particular stress level and contributes 5 modulus values at steps 
of strain between 0.01% and 1%. For each strain level the best fit 
power curve is found and the results are listed in Table 2. 

Table 2 - Constant and exponent of stress and strain dependency 

Strain level Coefficient 
 (MPa) 

Exponent Regression 
Coefficient 

0.01% 230.6 0.3963 0.98 

0.03% 198.3 0.3716 0.99 

0.10% 168.1 0.3445 0.99 

0.30% 144.6 0.3198 0.99 

1.00% 122.6 0.2927 0.99 
 

Step 2 of this process is to isolate the influence of strain. Figure 
8 shows the coefficient and exponent of the exponential curves 
obtained in figure 7 plotted against strain. The log lines that best 
define the development of the constant values and exponent 
values are obtained (see table 3), where log strain is the abscissa. 
 
 

 

Table 3 - Final parameters for stress and strain dependency 

 Coeff. Const. 
Values for the exponent of 
modulus as a function of log 
strain (x and z) 

-0.022 0.189 

Values for the constant of 
modulus as a function of log 
strain (c and d) 

-23.41 10.613 

 
The single power curve defining secant shear modulus for this 
material using the results listed in Table 3 is written as follows, 
where the coefficient and exponent vary with shear strain: 

 
where 

��  �  ����
	  

A= c ln(γ) + d 
J= x ln(γ) + z 

(12) 

The efficacy of the solution can be demonstrated graphically 
(fig.9) by comparing the starting parameters used to make fig 7 
to those obtained using the final result. The lines in the plot are 

obtained from applying the solution to the values of σav given in 
Table 1. 

5 Discussion and conclusions 
There are many ways of obtaining shear stress and shear strain 
parameters from a pressuremeter test, but none which require so 
little external information as the method outlined here. For the 
most part all the information necessary to produce the factors for 
(12) comes directly from the measured field curve.  

There is a need to know the ambient pore water pressure 
and the critical state friction angle and also the peak angle of 
internal friction, Фpk. To some extent, therefore, the factors are 

 
 

Figure 8  Isolating strain dependency 
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Figure 9 Comparing initial data to final results. 
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Figure 7  Isolating stress dependency 
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influenced by the analysis of the whole test curve.  However the 
exponent J defined in (12) is unaffected by changes to Фpk – it is 
only the coefficient A that is slightly altered, so major changes in 
Фpk have a minor influence on Gs. The approach to deriving the 
mean effective stress is about the simplest possible, and depends 
on Фpk being constant over the part of the test curve where the 
unload/reload cycles are taken. 

If volumetric strains are ignored whilst the sand is 
deforming elastically, then shear stress and shear strain co-
ordinates from unload/reload cycles could, for simplicity, be 
derived using the Palmer solution for undrained events.  The 
effect is to slightly over-estimate stiffness, the magnitude of the 
error depending on how far away the sand is from its critical 
state. The Manassero method gives a rigorously correct solution 
for shear strains below the plastic threshold. 

Pressuremeter tests are shearing processes and the 
deformations and stresses measured are a function of the shear 
stiffness of the material. Throughout this description plane strain 
has been used but it is a simple matter to derive equivalent 
expressions for axial strain and to include Poisson’s ratio to 
allow Young’s modulus to be inferred (Whittle 1999). The shear 
modulus being determined is Ghh so all extrapolations between 
this value and other kinds of modulus need to consider the 
anisotropy of the material. 

Although not given here, it is straightforward to adapt 
(11) for the case of a drained expansion in a c´ - phi material, 
and to calculate σav for plastic contraction.  

The method that has been given is the reduction of a 
number of power curves until a single expression is obtained that 
defines secant shear modulus as a function of mean effective 
stress. For the most part the stress of most interest will be the 
effective insitu lateral stress, σ´ho.  One of the pleasing aspects of 
the relationship described is the absence of a need to know σ´ho 
in order to derive all the parameters. 

The method has a possible application in finite element 
code. It is common practice for consultancies to use non-linear 
modelling and the solution presented here allows fine control of 
stress and strain level for describing stiffness variation. A 
considerable amount of calibration and back analysis would be 
required to validate the model. 

6 Terminology 

Α Stress level coefficient with a strain dependency 

ε strain, suffix r for radial stress, c for circumferential stress 

γ shear strain 

p pressure at the cavity wall 

Gs secant shear modulus 

Фpk peak angle of internal friction. 

Фcv angle of internal friction when the material is shearing at 
constant volume 

σ stress, suffix r for radial stress, c for circumferential stress 

σav Mean effective stress 

σ´ho Effective insitu lateral stress 

kp constant volume stress ratio [1�sin�cv]/[1−sin�cv]. ka 
is 1/kp 

τ shear stress 

α shear stress constant of a power law of stiffness 
degradation 

η radial stress constant of a power law of stiffness 
degradation – suffix s or c if the abscissa is shear strain or 
circumferential strain  

β exponent of a power law of stiffness degradation 

n  stress exponent describing the variation of stiffness with 
stress level for a linear elastic response 

J stress exponent, describing the variation of stiffness with 
stress level incorporating strain dependency 

7 References 

BELLOTTI, R., GHIONNA, V., JAMIOLKOWSKI, M., ROBERTSON, 
P. and PETERSON, R. 1989. Interpretation of moduli from self-
boring pressuremeter tests in sand. Géotechnique 39, no.2, pp.269-
292.  

BOLTON M.D. 1999. The Role of Micro-Mechanics in Soil 
Mechanics.CUED/D-Soils/TR313 

BOLTON M.D. and WHITTLE R.W.  1999. A non-linear 
elastic/perfectly plastic analysis for plane strain undrained expansion 
tests. Géotechnique 49, No. 1,  pp 133-141. 

HUGHES, J.M.O., 1982.  Interpretation of pressuremeter tests for the 
determination of elastic shear modulus. Proc. Eng. Fdn. Conf. 
Updating Subsurface Sampling of Soils and Rocks and their InSitu 
Testing, Santa Barbara, Balkema, Rotterdam, pp. 279– 289. 

JANBU, N. 1963. Soil compressibility as determined by oedometer and 
triaxial tests. Proc. 3rd  Eur. Conf. Soil Mech., Wiesbaden 2,  
pp 19-24.  

JARDINE, R.J. 1991. Discussing ‘Strain-dependent moduli and 
pressuremeter tests’ . Géotechnique 41, No. 4.,pp 621-624 

MANASSERO, M. 1989. Stress-Strain Relationships from Drained Self 
Boring Pressuremeter Tests in Sand. Géotechnique 39, No.2,  pp 
293-307.  

MUIR WOOD, D. 1990. Strain dependent soil moduli and pressuremeter 
tests. Géotechnique, 40, pp 509-512.  

PALMER, A.C. 1972. Undrained plane-strain expansion of a cylindrical 
cavity in clay: a simple interpretation of the pressuremeter test, 
Géotechnique 22 No. 3  pp 451- 457. 

ROWE, P.W. 1962.. The Stress Dilatancy Relation for Static 
Equilibrium of an Assembly of Particles in Contact.  Proceedings of 
the Royal Society.  Vol. 269, Series A,  pp 500-527. 

WHITTLE, R.W 1999. Using non-linear elasticity to obtain the 
engineering properties of clay. Ground Engineering, May, vol. 32, 
no.5, pp 30-34. 




